
OpenZFS Cheat Sheet

Storage Pool Configurations
Single Disk Not redundant, mounted as /mypool, there is
no need for an entry in /etc/fstab. zpool create mypool disk1

Stripe (RAID-0) No redundancy, loss of all data if any
one disk dies. High performance, full disk space of all disks usable.
zpool create mystripe disk1 disk2

Mirror (RAID-1) Survives failure of one drive, VDEV shown
as mirror-0 in zpool status output, parallel reads of all disks,
slow writes on all disks, lower total capacity compared to RAID-0.
zpool create mymirror mirror disk1 disk2

Single-Parity (RAID-Z1) Requires at least 3 disks, survives
one failing disk, parity information gets distributed across all disks,
fast reads and writes with comparable performance, 66% total
capacity. Shown as raidz1-0 VDEV in zpool status output.
zpool create paritypool raidz disk1 disk2 disk3

Double-Parity (RAID-Z2) survives the failure of two disks
per VDEV, slower than RAID-Z1, 4 disks required, 50% capacity.
zpool create myraidz2 raidz2 disk1 disk2 disk3 disk4

RAID10 Min. of 4 disks needed, survives failure of 2 disks (one
per VDEV) high read speeds, write speed half of that, capacity 50%.
Good compromise between redundancy, capacity and performance.
zpool create myr10 mirror disk1 disk2 mirror disk3 disk4

Triple-Parity (RAID-Z3) Little slower than RAID-Z2, redun-
dancy of three disks per VDEV, min. 5 disks required, 40% capacity.
zpool create myz3 raidz3 disk1 disk2 disk3 disk4 disk5

Display Pool Status
zpool status Display pool status including disk configuration,
any errors and applicable updates, last scrub (if any).
zpool list Show pool capacity, used and free space.
zpool iostat Display pool I/O statistics.
Options display individual devices (-v), I/O latency (-w),
request size histograms (-r), wait (-l) and queue statistics (-q).
zpool history Administrative command history of the pool. Op-
tions include long form (-l) or events like transaction groups (-i).
zpool get Properties and values, change defaults via zpool set.

Special VDEVs
Level 2 ARC (L2ARC)
A fast read cache for cases where data does not fit in the ZFS
main memory cache (ARC: adaptive replacement cache) anymore.
Reads will then served out of the L2ARC, which requires a fast
storage device (flash) to see benefits. Use the cache keyword to
add such a device to a pool. zpool add mypool cache /dev/nda0

ZFS Intent Log (ZIL) Changes synchronous into asynchronous
writes (does not affect reads). Applications get faster confirmation
of written data and hence acts like a database transaction log. Gets
cleared once the writes have reached the underlying pool storage me-
dia. Requires fast storage media, but does not need to be big. Use the
log keyword to add to a pool: zpool add mypool log /dev/nda1

Spare Does not take I/O until replaced (manually or by external
failure management software) with a failed pool disk. Add to a pool
with the spare keyword: zpool add mypool spare /dev/nda2

Pool Extension
Turn single disk pool into RAID1
The single disk pool device nda0 gets the mirror partner disk nda1
attached: zpool attach mypool mirror /dev/nda0 /dev/nda1

Replace failed disk Exchange the failed pool disk nda2
with device nda3: zpool replace mypool /dev/nda2 /dev/nda2

Pool Import/Export
Export Finishes and closes I/O operations, then unmounts the
pool from the filesystem hierarchy. Attach to a different system and
import there to reconstruct the pool state. zpool export mypool

Import Imports pools into the running system.
• Scan for ZFS pool signatures: zpool import
• Import a pool via ID or its name: zpool import mypool
• Renames a pool: zpool import oldname newname
• Mount the imported pool under a different path to prevent

shadowing existing ones: zpool import -R /media mypool
• Import readonly: zpool import -o readonly mypool
• Try restoring recently destroyed pool: zpool import -D mypool

ZFS Datasets
Datasets sit on top of the pool and consume its space. Addressed
like this: mypool/data. Each pool creates a default dataset with
its own name as top level. Example: zpool create test disk1
creates a pool and dataset called test, which may hold child
datasets beneath. Mounts the top-level pool as the /test dataset.
Create new dataset Creates a new dataset called ds, inherits
most properties of the parent dataset: zfs create mypool/ds
Create multiple datasets: zfs create -p mypool/home/fred

Display datasets
List the used, available space, and mountpoint: zfs list
• Show dataset by ZFS path: zfs list mypool/ds
• List datasets and any children: zfs list -r mypool/ds
• Limit display depth of datasets: zfs list -d 1 mypool/home
• Display dataset name only: zfs list -o name mypool/home
• Remove output headers, too: zfs list -Ho name mypool/home
• Change display order: zfs list -o used,avail,refer,name

• Sort output by column: zfs list -rs refer mypool/home
• Reverse sort order: zfs list -rS refer mypool/home

Display available pool space Lists available and used space
per dataset and children, including snapshots and any reservations:
zfs list -o space Recommendation: use instead of df -h.
Rename dataset Rename dataset or move to a different place
within the pool hierarchy, comparable to the Unix mv command.
zfs rename mypool/home/fred mypool/home/eva

Destroy dataset Simulate first: zfs destroy -nv mypool/old
Output: would destroy mypool/old
Remove and show result: zfs destroy -v mypool/old
Output: will destroy mypool/old
Recursively destroy datasets: zfs destroy -r mypool/testdata

Properties
Dataset use is flexible by inheriting most of their parents properties.
Children may override these if necessary. Change only default
properties in the SOURCE column. The same goes for pool properties.
Display properties There are various ways to display properties:
• Show pool properties: zpool get all mypool
• Display all properties of a dataset: zfs get all pool/dataset
• List single property (capacity): zpool get capacity mypool
• List multiple properties: zpool get capacity,health mypool

Change properties
Deactivate access time property: zfs set atime=off mypool
Change mountpoint: zfs set mountpoint=/media mypool/ds

Custom Properties Define custom dataset property as a
key=value pair. Datasets inherit them, but can change their value.
• Creation: zfs set warranty:expires=2048/04/20 mypool
• List custom property: zfs get warranty:expires mypool
• Reset the value: zfs inherit warranty:expires mypool
• Remove property: zfs inherit -r warranty:expires mypool

Scrub
ZFS stores checksums alongside the data and in the whole dataset
hierarchy. Different factors like I/O errors, malformed drivers or
defective RAM, broken cables, etc. cause the checksum calculation
to not match anymore. Given enough redundancy at the pool level
(VDEVs), ZFS finds these errors and corrects them (self healing).
Run monthly scrubs on the pool to re-calculate the checksums. If
they do not match, ZFS asks the redundant VDEV for it and corrects
the data if they match. zpool scrub mypool The zpool status
output displays the progress of the scrub operation and any errors
that were found. There is no fsck in ZFS since it is unnecessary.

Volumes
ZFS Volumes uses contiguous pool space to export via iSCSI over
the network. When formatting a volume with a non-ZFS filesystem,
then this filesystem uses all underlying ZFS features automatically.
Volume creation
Create a 10 GB ZFS volume: zfs create -V 10G mypool/vol1

Create sparse volume An overprovisioned
volume that does not use the reserved space right away, but
fills it up over time. zfs create -V 1P -s mypool/sparse1PBvol



Quota
Each dataset may use up the entire disk space of the pool. Quotas
restrict that to certain user defined amounts. Writes that run
over the quota are strictly stopped by ZFS to enforce the quotas.
Define Quota
Datasets do not have a quota by default. Set a quota for a specific
dataset using zfs set: zfs set quota=10G mypool/dataset
A quota restricts the dataset and any children (existing and future
ones). Datasets share the total quota amongst themselves. If a
quota should apply to the parent dataset alone, then use: zfs set
refquota=10G mypool/dataset ZFS quotas may also restrict cer-
tain daemons or users in the system: zfs set userquota@fred=10G
mypool/home/fred A group quota restricts a collection of users as
a whole: zfs set groupquota@projectX=100G mypool/projectX
Display quotas Query the quota property using zfs get:
• List quotas for a given dataset: zfs get quota mypool/dataset
• Same for the refquota: zfs get refquota mypool/home/fred
• Display a userquota: zfs userspace mypool/home/fred
• Show group quotas: zfs groupspace mypool/projectX
Remove quota Return dataset to having no quota applied
(same for refquota): zfs set quota=none mypool/home/fred

Reservation
Reservations guarantee a certain amount of available disk space in
the pool, regardless of how much other datasets use. This reduces
the total pool space for the reservation. This prevents any one
dataset to use up the whole pool space and allows capacity planning.
Define reservation
The reservation property controls the amount of disk space to
reserve for a dataset: zfs set reservation=100G mypool/home
Reservations apply to child datasets, too. Set the reservation to the
dataset alone: zfs set refreservation=10G mypool/home/eve
Display reservation
Use the reservation property to show the dataset reservation:
zfs get reservation mypool/home/eve Likewise, zfs list -o
space shows the used reservation in the USEDREFRESERV column.
Remove reservation Set reservation or refreservation
to none: zfs set reservation=none mypool/home/eve

Snapshots
Snapshots provide a quick way of preserving a readonly state of the
dataset at a certain time. Roll back a snapshot to return the dataset
to the snapshot’s creation time. Restoring individual files from the
snapshot is also possible without a complete rollback. A hidden .zfs
directory allows readonly access to individual files for this purpose.
Snapshot creation zfs snapshot mypool/ds@mysnapshot
Short form: zfs snap mypool/ds@mysnapshot
Recursive snapshot: zfs snap -r mypool/ds@mysnapshot
Display snapshots
List all dataset snapshots: zfs list -t snap mypool/ds
List snapshots with all children: zfs list -rt snap mypool/ds
Show writes since last snapshot
The written property shows the amount of data written to the
dataset since taking the last snapshot. In combination with used
and referenced it gives a good overview of the necessary pool
space: zfs list -rt all -o name,used,refer,written mypool

Compare snapshots Use zfs diff to compare changes in the
dataset since a particular snapshot: zfs diff mypool/ds@backup
The table below describes the output:

Character Description
+ File added
− File deleted
M File modified
R File renamed

Applied to directories means changes in the metadata. Compare two
snapshots: zfs diff mypool/ds@backup1 mypool/ds@backup2

Snapshot rollback Throws away the current dataset state and
returns to the last snapshot state. Removes all created data since
that particular snapshot. zfs rollback mypool/ds@backup2
Rolling back to an earlier snapshot requires the removal of all
intermediary snapshots: zfs rollback -r mypool/ds@backup1

Snapshot mounting Mount a snapshot into the filesystem as a
readonly dataset: mount -t zfs mypool/ds@backup /mnt/backup

Delete snapshot range
Execute a verbose (-v) dry run (-n) first to
see what would get deleted: zfs destroy -vn mypool/ds@backup
If this is the desired action, remove the dry run parameter
-n to execute: zfs destroy -v mypool/ds@backup Recursively
delete snapshots using -r: zfs destroy -rv mypool/ds@backup

Delete range
For snapshots @a - @e, define different ranges for deletion:

• Delete @b through @d (inclusive): zfs destroy -v mypool@b%d
• Delete starting from snapshot @b: zfs destroy -v mypool@b%
• Delete snapshots before @b: zfs destroy -v mypool%@b

ZFS Holds Preserve a snapshot by creating a
hold referenced by a custom tag (description). ZFS allows multiple
tags and only if the last tag is gone, the snapshot may be removed.

• Create new hold: zfs hold keepme mypool/home@important
• List holds recursively: zfs holds -r mypool/home@important
• Lift a hold again by tag: zfs release mypool/home@important

Clones
A clone represents a writeable version of a snapshot. All the data
from the snapshot they are based on are present in the clone, too.

Clone creation Create a clone from an existing snapshot using
zfs clone: zfs clone mypool/ds@backup mypool/myclone
The origin property of a clone contains the originating
snapshot for reference: zfs get origin mypool/myclone

Make clone independent ZFS prevents removing a snapshot
as long as dependent clones still exist. Resolve this by reversing
the dependency of clone and snapshot by promoting a clone to a
full dataset: zfs promote mypool/myclone The origin property
disappears and the snapshot is associated with the clone now.

Clone removal
Delete clones like regular datasets: zfs destroy mypool/myclone

Encryption
ZFS allows encrypting datasets with individual keys. Some meta-
data remains unencrypted to allow scrub and other operations to run.
Create encrypted dataset Set dataset encryption passphrase:
zfs create -o encryption=on -o keyformat=passphrase
-o keylocation=prompt mypool/secret

Load status Get status: zfs get keystatus mypool/secret

Load key Unencrypt dataset: zfs load-key mypool/secret

Delegation
ZFS allows delegating ZFS commands to non-root users.
Delegate permission to user Grant user the atime property
permission on dataset: zfs allow -u joe atime mypool/dataset

Display delegations
Show existing dataset delegations: zfs allow mypool/dataset

Remove delegation Use zfs unallow to remove compression
permission: zfs unallow -u joe compression mypool/dataset

Delegate permission to group
Target a group: zfs allow -g mygroup atime mypool/dataset

Delegate permission to delegate
ZFS permits delegating those permissions that the delegating
user possesses: zfs allow -u jill allow mypool/dataset

Create a set of permissions A permission set allows combin-
ing multiple delegations under a user-defined name: zfs allow -s
@myset mount,snapshot,rollback,destroy mypool/dataset

Use permission set for delegations Apply permission set to
grant permissions: zfs allow -u jill @myset mypool/dataset

Sending and Receiving Snapshots
ZFS allows transferring snapshots as a byte stream locally or over
the network to the same or a different pool for backup purposes.
Write snapshot to a file Write a byte stream representation
of the data to a file: zfs send mypool/ds@backup > dsbackup
Restore this file to the same or a different pool using zfs receive.
Display more details about the transfer using the -v parameter:
zfs send -v mypool/ds@backup > target

Create dataset from snapshot
Use receive (or: recv) to re-create dataset from snapshot: zfs
recv mypool/backup < dsbackup Display transfer details using
the -v parameter: zfs recv -v mypool/backup < dsbackup

Replication without intermediary file
A pipe between zfs send and zfs recv combines the input
and output: zfs send mypool/ds@backup|zfs recv mypool/new

Replication via SSH
Send snapshots over SSH to another pool on a different host:
zfs send poolA/ds@backup|ssh host zfs recv poolB/new

Send permissions Allow non-root user sender to send
datasets: zfs allow -u sender send,snapshot mypool/source

Receive permissions
Non-root user receiver requires more permissions: zfs allow
-u receiver compression,mountpoint,mount,create,receive
mypool/destination
Benedict Reuschling (benedict@reuschling.org), March 2025


	Storage Pool Configurations
	Display Pool Status
	Special VDEVs
	Pool Extension
	Pool Import/Export
	ZFS Datasets
	Properties
	Scrub
	Volumes
	Quota
	Reservation
	Snapshots
	Clones
	Encryption
	Delegation
	Sending and Receiving Snapshots

